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Introduction
In August 2024 the National Institute of Standards and Technology (NIST) in the USA stan-
dardized the first three Post-Quantum Cryptography algorithms to begin preparing for fault
tolerant quantum computers. NIST also announced that the current classical cryptography
algorithms (RSA and ECDSA) will be deprecated by 2030 and disallowed by 2035. The
newly standardized cryptographic algorithms are based on mathematics that is very differ-
ent than classical cryptography. The main new algorithms are designed with lattice-based
mathematics, in particular they are secured by the hardness of the shortest vector prob-
lem (SVP). We have studied the hardness of the SVP and the various methods by which
researchers have tried to solve the SVP.

In the context of quantum algorithms we have found a quadratic unconstrained binary
optimization (QUBO) formulation [1] that we are implementing on a quantum annealing
system to analyze how secure SVP is against quantum computing. Along with that we are
also implementing basis reduction algorithms that can then be combined with the QUBO
formulation for an optimized security analysis of the SVP.

Lattice-based Post-Quantum Cryptography
Lattice-based cryptography is a relatively modern area of research. The development of the
new algorithms occured within the passed 20 years and haven’t had significant scrutiny until
the recent NIST standardization competition that began in 2016. The recently standardized
algorithms FIPS203 (ML-KEM) and FIPS204 (ML-DSA) are both lattice-based algorithms
which have their security rooted in the shortest vector problem.

Shortest Vector Problem
The concept behind the SVP is to be given a lattice (basis of the lattice) and then be able to
find the shortest vector in that lattice which is closest to the origin (zero vector).

SVP is relatively easy prob-
lem to visualize in two di-
mensions yet is considered
extremely difficult to solve
in higher dimensional lat-
tices.

Basis Reduction Algorithms
A key definition to describe
a lattice is the concept of a
basis. The basis of a lattice
is a set of vectors that can
generate all possible lattice
points through linear com-
binations. The same lattice can be represented by different bases. Some bases are consid-
ered “bad”, while others are “good” depending on how easy it is to find short vectors within
the lattice, building a connection to SVP. This task becomes easier when the basis vec-
tors are shorter and more orthogonal. Basis reduction algorithms address this by taking a
“bad” basis, making step-by-step improvements on the length and orthogonality of the basis
vectors, and finally outputting a “better” basis.

Basis reduction from vi to ui

There are a variety of basis reduc-
tion algorithms. We decided to im-
plement the LLL algorithm and the
BKZ algorithm. BKZ is known as
the most efficient reduction algorithm
and it turns out to implement LLL
multiple times within it. Therefore we
considered it practical to have imple-
mentations of our own to then test
and analyze against the SVP.

The search for short vectors

Babai’s Nearest Plane algorithm

There are various methods researchers use to
solve the SVP, often called SVP-solvers. Lat-
tice enumeration systematically explores the
lattice by examining all possible vectors within
a certain bound. Another method called Siev-
ing generates a large set of lattice vectors and
iteratively combines them to find shorter vec-
tors. Enumeration and sieving-based SVP-
solvers are commonly used as subroutines
during the execution of BKZ. Each tech-
nique has its advantages and disadvantages,
though they are known to be exponential in
time or memory with respect to the lattice di-
mension.

Another fundamental hard lattice problem is
the Closest Vector Problem (CVP), which asks
to find the closest lattice point to some point x that isn’t included in the lattice. CVP and SVP
are closely related, as both involve finding small vectors within the lattice. A commonly
known algorithm for CVP is Babai’s nearest plane algorithm, an approximation method that
projects a target vector onto successive hyperplanes defined by the lattice basis vectors to
find a nearby lattice point.

Our approach
Our approach to solve the shortest vector problem began with the following steps:

1. We have a description of the SVP as a QUBO formula from [1].

2. We have implemented the LLL-basis reduction algorithm in python.

3. Work in progress to implement BKZ-basis reduction algorithm.

4. Working on finalizing the QUBO formulation in python.

5. Combine the implementation of LLL-BKZ and the QUBO formulation in python.

Overall approach for PQC-SVP and Quantum Algorithms

Quantum Implementation
Next steps
Our plan is to study the problem in different ways to implement the QUBO on a quantum
computer.

1. Quantum annealing with D-Wave. We already have some experience in using D-Wave [2].
We will test the QUBO formulation of SVP [1] on D-Wave with a focus on determining the
security levels of lattice-based PQC algorithms.

2. Quantum Approximate Optimization Algorithm (QAOA) as such, and with quantum walk
assisted way. (Gate based quantum computing).

Our study is funded by Business Finland, see https: // www. cohqca. fi/ for further infor-
mation. Companies in the project steering group are Nokia Bell Labs, Unitary Zero Space
and Cumucore.

Summary

• Post-Quantum Cryptography algorithms are very new and require signifi-
cant analysis.

• Studied various methods of solving the shortest vector problem.
• Implemented the LLL-basis reduction algorithm in python.
• Progressing to implement BKZ-basis reduciton algorithm.
• Progressing on QUBO formulation of SVP and implementing the QUBO on
a quantum annealing computer.
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